ECMWF COPERNICUS REPORT

CDR and ICDR Sentinel-3 Land Cover (v2.1.1)

Issued by: UCLouvain/ Pierre Defourny Date: 12/03/2024 Ref: WP2-FDDP-LC-2021-2022-SENTINEL3-300m-v2.1.1_PUGS_v1.1 Official reference number service contract: 2022/C3S2_312a_Lot5_VITO/SC1

This document has been produced in the context of the Copernicus Climate Change Service (C3S).

The activities leading to these results have been contracted by the European Centre for Medium-Range Weather Forecasts, operator of C3S on behalf on the European Union (Contribution Agreement signed on 22/07/2021). All information in this document is provided "as is" and no guarantee of warranty is given that the information is fit for any particular purpose.

The users thereof use the information at their sole risk and liability. For the avoidance of all doubt, the European Commission and the European Centre for Medium-Range Weather Forecasts have no liability in respect of this document, which is merely representing the author's view.

Contributors

UCLOUVAIN

Pierre Defourny Céline Lamarche Audric Bos

BROCKMANN CONSULT GMBH

Carsten Brockmann Martin Boettcher Grit Kirches

History of modifications

Version	Date	Description of modification	Chapters / Sections
V1.0	20/02/2024	First issue	All
V1.1	12/03/2024	Document amended to account for feedback from independent reviewer and finalized for publication.	All

List of datasets covered by this document

Deliverable ID Product title		Product type (CDR, ICDR)	Version number	Delivery date
WP2-FDDP-LC-2021- SENTINEL3-300m-v2.1.1	ICDR Land Cover 2021	ICDR	2.1.1	15/07/2023
WP2-FDDP-LC-2022- SENTINEL3-300m-v2.1.1	ICDR Land Cover 2022	ICDR	2.1.1	30/04/2024

Related documents

Reference ID	Document
RD - 1	ECMWF, 2017: C3S ECMWF Copernicus Procurement: Invitation to Tender Copernicus project: Proposal for Lot 5: Surface albedo, LAL fAPAR, Land Cover and Fire, 15,06,2017
RD - 2	E.U. Copernicus Climate Change Service (2024), Product Quality Assurance Document – CDR and ICDR Sentinel-3 Land Cover (v2.1.1), 22/02/2024 WP2-FDDP-LC-2021-2022-SENTINEL3-300m-v2.1.1_PQAD_v1.3 (not yet published)
RD - 3	E.U. Copernicus Climate Change Service (2024), Product Quality Assessment Report – CDR and ICDR Sentinel-3 Land Cover (v2.1.1), xx/xx/2024 WP2-FDDP-LC-2021-2022-SENTINEL3-300m-v2.1.1_PQAR_v1.1 (not yet published)
RD - 4	E.U. Copernicus Climate Change Service (2024), Algorithm Theoretical Basis Document – CDR and ICDR Sentinel-3 Land Cover (v2.1.1), 22/02/2024 WP2-FDDP-LC-2021-2022-SENTINEL3-300m-v2.1.1_ATBD_v1.2 (not yet published)

Acronyms

Acronym	Definition	
(A)ATSR	(Advanced) Along Track Scanning Radiometer	
API	Application Programming Interface	
ATBD	Algorithm Theoretical Basis Document	
AVHRR	Advanced Very High-Resolution Radiometer	
BC	Brockmann Consult GmbH	
C3S	Copernicus Climate Change Service	
CCI	Climate Change Initiative	
CCI-LC	Climate Change Initiative Land Cover	
CDR	Climate Data Record	
CDS	Climate Data Store	
CEOS	Committee on Earth Observation Satellites	
CEOS-WGCV	CEOS Working Group on Calibration and Validation	
CMC	Climate Modelling Community	
CMUG	Climate Modelling User Group	
CRS	Coordinate Reference System	
ECV	Essential Climate Variable	
ERS	European Remote Sensing Satellite	
Envisat	Environmental Satellite	
EO	Earth Observation	
ESA	European Space Agency	
ET	Evapotranspiration	
fAPAR	Fraction-Absorbed Photosynthetically Active Radiation	
FR	Full Resolution	
GCOS	Global Climate Observing System	
GCS	Global Coordinate System	
GDAL	Geospatial Data Abstraction Library	

Acronym	Definition
GIS	Geographic Information System
ICDR	Intermediate Climate Data Record
IPCC	Intergovernmental Panel on Climate Change
LAI	Leaf Area Index
Landsat	Land remote sensing Satellite
LC	Land Cover
LCCS	Land Cover Classification System
LS	Land Surface
MERIS	Medium Resolution Imaging Spectrometer
MODIS	Moderate Resolution Imaging Spectroradiometer
NetCDF	Network Common Data Form
NDVI	Normalized Difference Vegetation Index
OLCI	Ocean Land Color Instrument
PFT	Plant Functional Types
PROBA-V	Project for On-Board Autonomy, with the V standing for Vegetation
PUG	Product User Guide
RR	Reduced Resolution
SPOT	Satellite Pour l'Observation de la Terre
SPOT-VGT	SPOT- Vegetation
SR	Surface Reflectance
S3	Sentinel 3
UCLouvain	Université catholique de Louvain
UN	United Nations
UNFCCC	United Nations Framework Convention on Climate Change
WB	Water Body
WGS84	World Geodetic System 84

General definitions

Brokered Product: A brokered product is a pre-existing dataset to which the Copernicus Climate Change Service (C3S) acquires a license, for the purpose of including it in the Climate Data Store (CDS).

Satellite Data Processing Levels

Description of data processing levels ranging from Level 0 to Level 4 has been cited from the following National Aeronautics and Space Administration (NASA) Earth Observation Data website: https://www.earthdata.nasa.gov/engage/open-data-services-and-software/data-information-policy/data-levels

- Level 0 (L0) data are reconstructed, unprocessed instrument and payload data at full resolution, with any and all communications artefacts (e.g., synchronization frames, communications headers, duplicate data) removed.
- Level 1A (L1A) data are reconstructed, unprocessed instrument data at full resolution, timereferenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients and georeferencing parameters (e.g., platform ephemeris) computed and appended but not applied to L0 data.
- Level 1B (L1B) data are L1A data that have been processed to sensor units (not all instruments have L1B source data).
- Level 1C (L1C) data are L1B data that include new variables to describe the spectra. These variables allow the user to identify which L1C channels have been copied directly from the L1B and which have been synthesized from L1B and why.
- Level 2 (L2) data are derived geophysical variables at the same resolution and location as L1 source data.
- Level 2A (L2A) data contains information derived from the geolocated sensor data, such as ground elevation, highest and lowest surface return elevations, energy quantile heights ("relative height" metrics), and other waveform-derived metrics describing the intercepted surface.
- Level 2B (L2B) data are L2A data that have been processed to sensor units (not all instruments will have a L2B equivalent).
- Level 3 (L3) are variables mapped on uniform space-time grid scales, usually with some completeness and consistency.
- Level 3A (L3A) data are generally periodic summaries (weekly, ten-day, monthly) of L2 products.
- Level 4 data are model output or results from analyses of lower-level data (e.g., variables derived from multiple measurements).

Pre-processing

Data pre-processing in the case of Land cover processing refers to the preparation of the data for the classification, which includes pixel identification and atmospheric correction and temporal resampling. The algorithms used are adapted to the requirements of the subsequent application.

Classification

Image classification in remote sensing is defined as the process of categorising all pixels in satellite data/images to obtain a given set of labels (Lillesand & Keifer, 1994).

Land cover

Land Cover (LC) and land cover change (LCC) are becoming increasingly related to the climate modelling effort. Land cover change is a pressing environmental issue acting as both a cause and a consequence of climate change. The importance of these issues requires continuous monitoring systems and the most accurate data. The Copernicus Climate Change Service provides Intermediate Climate Data Records for many Essential Climate Variables, including LC. The global C3S LC maps 2016 – 2022 are/will be consistent with the existing European Space Agency Climate Change Initiative global annual LC maps from 1992 – 2015.

Land cover is the observed bio-physical cover on the Earth's surface (Townshend et al., 2008). It is not to be confounded with land use. Land use characterizes the arrangements, socio-economic activities and inputs people are undertaking on a certain land cover type.

The proposed land cover ontology assumes that the land cover is organized along a continuum of temporal and spatial scales and that each land cover type is defined by a characteristic scale, i.e. by the typical spatial extent and period over which its physical traits are observed (Miller, 1994). This twofold assumption requires introducing the time dimension in the land cover characterization to allow distinguishing between the stable and the dynamic components of the land surface.

The stable component, named "land cover", refers to the set of land surface features which remain stable over time and thus define the land cover independently of any sources of temporary or natural variability. Conversely, the dynamic component is directly related to this temporary or natural variability that can induce some variation in land surface features over time but without changing the land cover in its essence. This dynamic component is referred to as "land cover conditions" (Lamarche et al., 2013).

LC Change

In this context, 'LC change' (LCC) is therefore considered as a permanent modification of the LC – and not of its conditions – in comparison with a baseline status.

LC Classes

A LC class refers to a LC category described by a stable ensemble of land surface features forming a LC class (e.g., forest, cropland). Land surface features consist of landscape elementary units (e.g., a house, a tree, a water body, etc.) described by:

 the type of the observed features, such as tree, shrub, herbaceous vegetation, moss/lichen vegetation, terrestrial or aquatic vegetation, inland water, built-up areas, permanent snow/ice, etc;

- (2) the structure of the observed features, like the vegetation height, vegetation cover, building density, etc;
- (3) the nature of the observed features, such as the level of artificiality or some species information (e.g., C3/C4 distinction);
- (4) the homogeneity of the observed features at the level of observation, leading to pure or mosaic classes.

The LC classes are well-defined and described using the UN/FAO Land Cover Classification System (LCCS) (di Gregorio and Jansen, 2005).

Current pixel state

The current_pixel_state in the Land cover map product is the classification of the aggregated pixels regarding the following classes:

- invalid no observation or all observations are not valid
- clear_land at least one valid observation over clear land
- clear_water at least one valid observation over clear water and no valid observations over clear land and clear snow/ice areas
- clear_snow_ice at least one valid observation over a clear snow/ice area and no valid observations over clear land
- cloud all valid observations are covered by clouds
- cloud_shadow at least one valid cloud shadow observation and no valid observation over clear snow/ice area, clear land and clear_water

Table of Contents

History of modifications	3	
List of datasets covered by this document	3	
Related documents	4	
Acronyms	4	
General definitions	6	
Table of Contents	9	
Scope of the document	11	
Executive summary	11	
1 Land Cover Product	12	
1.1 Product description	14	
1.2 Processing chain	15	
2 Target requirements	20	
3 Data usage information	22	
3.1 Naming convention	22	
3.2 Processing level	22	
3.3 Units	22	
3.4 Spatial Extent	22	
3.5 Spatial Resolution	23	
3.6 Temporal Resolution	23	
3.7 Product Layer	23	
3.7.1 Projection	23	
3.7.2 File format and size	24	
3.7.3 Metadata	24	
3.8 Qualitative assessment	25	
3.9 Validation	28	
3.10 LIMITATIONS	28	
4 Data access information	31	
4.1 Access to the users through the CDS	31	
4.2 Data provider	31	
4.3 Data visualization and analysis		

5	References	32
6	Annex	34
	6.1 ANNEX A – C3S and CCI Land Cover legend	34
	6.2 ANNEX B – Land Cover product metadata	39

Scope of the document

This document provides a description of the C3S "Land cover classification gridded maps from 1992 to present derived from satellite observations". The Copernicus Climate Change Service (C3S) has developed global Land Cover (LC) maps version 2.1.1 from 2016 to 2022 as part of its operational activities. These maps are designed to maintain consistency with the global annual LC maps produced by the ESA-CCI LC project from 1992 to 2015 [Defourny et al., 2017], which have been brokered as LC maps version v2.0.7cds and have also been made available in the Climate Data Store (CDS)¹.

Executive summary

The C3S LC maps from 2016 to 2022 are part of a series of global land cover maps spanning the period from 1992 to 2022. These maps describe a land cover class per pixel of 300 m across more than 22 classes and depict its dynamics in a spatially and temporally consistent manner. It is delivered with 4 quality flags informing about the pixel and processing states, and LC changes in the map series and the number of valid and cloud-free observations counts.

This LC dataset is tailored for climate modelling communities, offering long-time period characterization, consistency, and yearly updates. Its comprehensive legend, spanning a global scale landscape diversity, makes it interesting for various applications such as land accounting, forest monitoring, and desertification studies.

This document contains information on the product, with descriptions of data format, filenames, metadata, and thematic content to familiarize users with the products.

¹ <u>https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview</u>

1 Land Cover Product

The C3S LC project delivers the global LC maps at 0.002778° spatial resolution (approximately 300 m at the equator) for 2016 to 2022 (version 2.1). The Coordinate Reference System used for the global land cover database is a geographic coordinate system (GCS) based on the World Geodetic System 84 (WGS84) reference ellipsoid.

The global 300m LC maps for 2016 to 2022 are based on the Project for On-Board Autonomy – Vegetation (PROBA-V) and SENTINEL-3 Ocean and Land Colour (S3-OLCI) Instrument and SENTINEL-3 Sea and Land Surface Temperature Radiometer (S3-SLSTR) and are consistent with the existing CCI global annual LC maps from 1992 – 2015 (see Table 1-1).

Table 1-1: Summary of t	the C3S LC products
-------------------------	---------------------

Droduct	Coverage		Resolution		Soncor	Dreiestien	Format
Product	Spatial	Temporal	Spatial	Temporal	Sensor	Projection	Format
Annual LC maps	Global	2016 - 2022	0.002778°	1-year	PROBA-V, S3-OLCI, S3-SLSTR	Plate- Carrée	NetCDF

Figure 1-1 presents the LC map from the year 2022 at a global scale and Figure 1-2 shows an example of the classification obtained throughout the years over a region of Argentina. The LC maps 1992-2015 were generated in the framework of the ESA CCI LC project while annual classifications for 2016 – 2022 were operationally generated under C3S. Both datasets are spatially and temporarily consistent.

Figure 1-1: The most recent map from the LC map series from the year 2022, at 300 m spatial resolution.

Figure 1-2: Illustration of a sequence of the global annual land cover maps for years 1992, 2000, 2004, 2007, 2011, 2020, 2021, and 2022 for an area of the Salta Province in Argentina. Coordinates: -25.0223,-63.5077 (EPSG:4326). Green areas represent forests, yellow indicates croplands, and brown signifies shrublands. Refer to Table 1-2 for the complete colour scheme.

The method used, and characteristics of the 2016 to 2020 LC maps are consistent with the process used to create the CCI-LC maps [see ATBD - RD - 4]. The following sections describe the legend of the LC maps, the processing chain including the classification and change detection modules and finally, the format of the maps and their four quality flags, valid for the full-time series.

1.1 Product description

The typology was defined using the Land Cover Classification System (LCCS) developed by the United Nations (UN) Food and Agriculture Organization (FAO) (di Gregorio and Jansen, 2005), with the view to be as much as possible compatible with the GLC2000 (Bartholomé and Belward, 2005), GlobCover 2005 and 2009 products (Defourny et al., 2006; Arino et al., 2008). In addition, the UN-LCCS was found quite compatible with the Plant Functional Types (PFTs) used in climate models [ESA, 2011]. The UN-LCCS defines LC classes using a set of classifiers which allows adjustment of the thematic detail of the legend to the amount of information available to describe each land cover class, whilst following a standardised classification approach.

As the LC maps are designed to be globally consistent, their legend is determined by the level of information that is available and that makes sense at the scale of the entire world. The "level 1" legend – also called "global" legend – presented in Table 1-2 meets this requirement. This legend contains 22 classes and each class is associated with a code having values that are multiples of 10 (i.e. class codes of 10, 20, 30, etc.).

The LC maps are also described by a more detailed legend, called "level 2" or "regional". This level 2 legend makes use of more accurate and regional information – where available – to define more LCCS classifiers thereby achieving a higher level of detail in the legend by being able to define more LCCS classes. This regional legend has therefore more classes, which are listed in Appendix A. The regional classes are associated with non-ten values (i.e. class codes such as 11, 12, etc.). They are not present all over the world since they could not be properly discriminated at a global scale.

The explicit LCCS definition of each LC global and regional class is provided in Appendix A.

Value	Label	Color	RGB
0	No Data		0, 0, 0
10	Cropland, rainfed		255, 255, 100
20	Cropland, irrigated or post-flooding		170, 240, 240
30	Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)		220, 240, 100
40	Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)		200, 200, 100
50	Tree cover, broadleaved, evergreen, closed to open (>15%)		0, 100, 0
60	Tree cover, broadleaved, deciduous, closed to open (>15%)		0, 160, 0
70	Tree cover, needleleaved, evergreen, closed to open (>15%)		0, 60, 0
80	Tree cover, needleleaved, deciduous, closed to open (>15%)		40, 80, 0

Table 1-2: Level 1 (or global) legend of the LC maps, based on the UN-LCCS.

Value	Label	Color	RGB
90	Tree cover, mixed leaf type (broadleaved and needleleaved)		120, 130, 0
100	Mosaic tree and shrub (>50%) / herbaceous cover (<50%)		140, 160, 0
110	Mosaic herbaceous cover (>50%) / tree and shrub (<50%)		190, 150, 0
120	Shrubland		150, 100, 0
130	Grassland		255, 180, 50
140	Lichens and mosses		255, 220, 210
150	Sparse vegetation (tree, shrub, herbaceous cover) (<15%)		255, 235, 175
160	Tree cover, flooded, fresh or brackish water		0, 120, 90
170	Tree cover, flooded, saline water		0, 150, 120
180	Shrub or herbaceous cover, flooded, fresh/saline/brackish water		0, 220, 130
190	Urban areas		195, 20, 0
200	Bare areas		255, 245, 215
210	Water bodies		0, 70, 200
220	Permanent snow and ice		255, 255, 255

Among these LC classes, four were largely identified thanks to external datasets: the "tree cover, flooded, saline water" (class value 170) class which is based on the global mangrove atlas [UNEP-WCMC, 2002], the "urban areas" (class value 190) which relies both on the Global Human Settlement Layer [Pesaresi et al., 2016] and on the Global Urban Footprint [Esch et al., 2017], the "water bodies" (class value 210) which have been inherited from the CCI global map of open water bodies and the "permanent snow and ice" (class value 220) which comes from the Randolph Glaciers Inventory [Pfeffer et al., 2014]. Class "permanent snow and ice" remains constant through time.

1.2 Processing chain

A key aspect of the LC maps is their consistency over time. To achieve this, the set of annual maps is not produced independently, but the maps are derived from a unique baseline LC map, which is generated thanks to the entire MERIS Full Resolution (FR) and Reduced Resolution (RR) archive from 2003 to 2012. Independently from this baseline, LC changes are detected at 1 km based on the AVHRR time series between 1992 to 1999, SPOT-VGT time series between 1999 and 2013, PROBA-V data for years 2014 to 2019, and S3-OLCI for 2020 to 2022. When MERIS FR, PROBA-V or S3-OLCI time-series are available, changes detected at 1 km are re-mapped at 300 m. The final step consists of back and up-dating of the 10-year baseline LC map to produce the 31 annual LC maps from 1992 to 2022.

The logical model underlying this processing chain is illustrated in Figure 1-3 and the EO data used to generate the global LC maps are summarized in Table 1-3.

Figure 1-3: Schematic representation of the CCI LC classification chain made of 2 main processes to generate global annual LC maps using the entire archives of Envisat MERIS, AVHRR time series between 1992 to 1999, SPOT-VGT time series between 1999 and 2013, PROBA-V data for 2014 – 2019², SENTINEL-3 OLCI for 2020 and SENTINEL-3 OLCI & SLSTR for 2021 –2022.

Table 1-3: Satellite data sources used	d to generate the global LC maps.
--	-----------------------------------

Global LC database	Reference period	Satellite data source
Baseline 10-year global LC map	2003-2012	• MERIS FR/RR global SR composites between 2003 and 2012
	1992-1999	 Baseline 10-year global LC map AVHRR global SR composites between 1992 and 1999 for back-dating the baseline
Global annual LC maps	1999-2013	 Baseline 10-year global LC map SPOT-VGT global SR composites between 1999 and 2013 for up and back-dating the baseline MERIS FR global SR composites between 2003 and 2012 to delineate the identified changes at 300 m spatial resolution PROBA-V global SR composites at 300 m for year 2013 to delineate the identified changes at 300 m spatial resolution³

² The left hand-side concerns data at 1 km. As SPOT_VGT was available up to 2013, we could use PROBA-V starting 2014. On the right-hand side, MERIS ends in 2012 so that we had to use PROBA-V partially in 2013 to have less data gaps for the Land cover change delineation at 300m.

³ see footnote 2

Global LC database	Reference period	Satellite data source
	2014-2019	 PROBA-V global SR composites at 1 km for years 2014 to 2019 for up-dating the baseline⁴ PROBA-V time series at 300 m for 2014 to 2019 to delineate the identified changes at the LC map spatial resolution
	2020-2022	 S3 global SR composites at 1 km for years 2020 to 2022 for up-dating the baseline S3 time series at 300 m for 2020 to 2022 to delineate the identified changes at the LC map spatial resolution

The classification module that generates the baseline map was developed by the Université Catholique de Louvain (UCLouvain). It was designed to be globally consistent while regionally tuned. It capitalized on the GlobCover unsupervised classification chain [Bicheron et al., 2008] while also relying on a machine learning algorithm and on a multiple-year strategy [Bontemps et al., 2012]. In this way, it combined both the spectral and temporal richness of the MERIS FR time series.

The change module works independently from the above-mentioned classification module. It consists of 2 consecutive steps: change detection at 1 km and change delineation at 300 m. The first step of the change module consists of mapping the dynamics of the land surface by analysing, on a per-pixel basis, annual time series of 1-km global classifications from 1992 to 2022 [ESA, 2017]. These annual classifications are derived from AVHRR time series between 1992 to 1999, SPOT-VGT time series from 1999 to 2013, PROBA-V time series from 2014 to 2019, and S3-OLCI time series for the 2020-2022 period. With their 1 km resolution, they allow the capture of the dominant land cover transitions. Yet, to avoid false change detections due to the inter-annual variability in classifications, each change must be confirmed over more than two successive years in the classification time series.

In the most dynamic regions of the world, more than one land cover change can be detected between 1992 and 2022. Most pixels are associated with 0, 1, 2 or 3 LCCs, knowing that most LCCs need to last at least two years to be detected. Water loss, forest gain and loss are recorded without confirmation. Class "permanent snow and ice" is stable through time.

Examples of annual classification time-series analyses are given in Figure 1-4.

⁴ see footnote 2

Figure 1-4: Change detection on a pixel-by-pixel basis was conducted using a time series of annual 1-km global classifications (from 1992 to 2022), derived from AVHRR, SPOT-VGT, PROBA-V, and S3-OLCI data. Each line represents a pixel, with each coloured square representing an annual land cover class in the time series. Red arrows indicate the years in which changes were detected along the time series.

The change is detected between land cover classes grouped into the six IPCC land categories, i.e. cropland, forest, grassland, wetland, settlement, and other land. This latter class is further split into shrubland, sparse vegetation, bare area, and water. This grouping was a requirement expressed by the climate users. It also avoids false change detection between LC classes that are semantically close. The correspondence between these IPCC land categories and the LCCS legend used in the LC maps is defined in Table 1-4.

IPCC Classes considered for the change detection	LCCS legend used in the CCI-LC maps			
1. Agriculture	10, 11, 12	Rainfed cropland		
	20	Irrigated cropland		
	30	Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)		
	40	Mosaic natural vegetation (tree, shrub, herbaceous cove (>50%) / cropland (< 50%)		
2. Forest	50	Tree cover, broadleaved, evergreen, closed to open (>15%)		
	60, 61, 62	Tree cover, broadleaved, deciduous, closed to open (> 15%)		
	70, 71, 72	Tree cover, needleleaved, evergreen, closed to open (> 15%)		
	80, 81, 82	Tree cover, needleleaved, deciduous, closed to open (> 15%)		
	90	Tree cover, mixed leaf type (broadleaved and needleleaved)		
	100	Mosaic tree and shrub (>50%) / herbaceous cover (< 50%)		
	160	Tree cover, flooded, fresh or brackish water		
	170	Tree cover, flooded, saline water		
3. Grassland	110	Mosaic herbaceous cover (>50%) / tree and shrub (<50%)		
	130	Grassland		

Table 1-4: Correspondence between the IPCC land categories used for the change detection and the LCCSlegend used in the LC classes.

IPCC Class for the cha	es considered nge detection	LCCS legend used in the CCI-LC maps		
4. Wetland		180	Shrub or herbaceous cover, flooded, fresh-saline or brackish	
			water	
5. Settlemen	t	190	Urban	
6. Other	Shrubland	120, 121, 122	Shrubland	
	Sparse	140	Lichens and mosses	
	vegetation	150, 151,	Sparse vegetation (tree, shrub, herbaceous cover)	
		152, 153		
	Bare area	200, 201, 202	Bare areas	
	Water	210	Water	

The second step of the change module is the detailed delineation of the change detection 1-km hot spots and their surroundings (up to 5 km) at 300 m between 2004 and 2022 thanks to the MERIS, PROBA-V and S3-OLCI time series available at a spatial resolution of 300 m at this period.

2 Target requirements

Considering the importance of LC as an input in climate modelling, the development of a new global LC database was initiated during the 1st phase of the CCI LC project. The specifications of this new database relied on an in-depth user requirement analysis conducted during the first six months of the CCI LC Phase I project [ESA, 2011].

This analysis highlighted the need to consider LC data under 2 aspects: stable in the form of LC map and dynamic in the form of time series. In addition, the LC products should provide flexibility to serve different scales and purposes in terms of spatial and temporal resolutions. Their quality should also be transparent by using quality flags and controls.

From a remote sensing point of view, these requirements – and the first one in particular – led to rethinking the whole LC concept into LC state and LS seasonality [ESA, 2014]. The LC state concept refers to the set of LC features remaining stable over time which define the LC independently of any sources of temporary or natural variability. It is agreed that the LC state is well described using the United Nations (UN) Land Cover Classification System (LCCS) [Gregorio et al., 2005], which is also quite compatible with the Plant Function Types (PFT) concept of many models [Gregorio et al., 2005]. The LS seasonality concept relates directly to the temporary or natural variability of LC features that can induce some variation in the land surface over time without changing the LC in its essence. This LS seasonality is typically driven by bio-geophysical processes. It encompasses different observable variables such as the green vegetation phenology, snow coverage, open water presence, and burned areas occurrence, etc.

Furthermore, the need to generate successive LC state products consistent over time resulted in the development of a new original classification approach. Most often, LC maps were generated from few instantaneous observations of the land cover state. As a result, classification outputs are sensitive to the date(s) of observation and can reflect temporary conditions (e.g. map savannahs as burnt scars, boreal forest as snow, croplands as bare soils, etc.). The developed alternative consisted of describing the LC state from a multi-year observation dataset. In this case, assuming that no LC change – even temporary – has occurred over this multi-year period, the LC is expected to be mapped in a consistent way over time. This approach was successfully implemented in the CCI LC and C3S LC projects. As a result of the CCI user requirement analysis, a number of product requirements were identified, as outlined in Table 2-1. These requirements are transferable and applicable in the C3S LC project.

Table 2-1: Threshold (minimum) and target (optimal) requirements identified for LC products in the User Requirements Survey carried out in the CCI LC project Phases I and II. Green tick-marks indicate fulfilled requirements. Red Xs indicate requirements that are not yet fulfilled [ESA, 2015].

	Threshold req. Phase 1		Target req. Phase 1		Threshold req. Phase 2		Target req. Phase 2	
		COVERAGE AND SAMPLING						
Geographic Coverage	Global	~	Global with regional and	×	Global with regional specific products	✓	Global with regional specific products	×

	Threshold req. Phase 1	Target req. Phase 1	Threshold req. Phase 2	Target req. Phase 2
		local specific products		
Temporal sampling	Best/stabl e map and regular updates	Monthly data on vegetation dynamics and change	5-10 year epoch maps with monthly vegetation dynamics (NDVI)	1-year epoch maps. Monthly data on vegetation dynamics (NDVI)
Temporal extent	1-2 years, most ✓ recent	1990 (or earlier)- 🗴 present	1990 (or earlier) - 🗸 🗸	1980 (or earlier) - present 🛛 🗴
			RESOLUTION	
Horizontal Resolution	1000 m 🗸	30 m 🗴	300 m ✓ with regional 30 m products ×	30 m 🗶
Vertical Resolution	-	-		
			ERROR/UNCERTAINTY	
Precision	Thematic LC detail sufficient to meet ✓ current modeling user needs	Thematic LC detail sufficient to meet future model needs	Thematic LC detail (incl. conversion tables to PFT for climatic regions) sufficient to meet current and future model needs, incl. key land IPCC changes	Thematic LC detail (incl. conversion tables to PFT for climatic regions and traits) sufficient to meet current and future model needs, incl. LC changes and management
Accuracy	Higher accuracy than ✓ existing datasets	Errors less than 5-10% either per class or as overall accuracy	Higher accuracy than existing datasets of the same period length	Errors less than 5-10% either per class or as x overall accuracy
Stability	Higher stability than ✓ existing datasets	Errors less than 5-10% either per class or as overall accuracy	Higher stability than v existing datasets	Errors less than 5-10% either per class or as x overall accuracy
Error Characterist ics	Independe nt one- time accuracy assessmen t	Operational and independent × multi-date validation	Independent multi- date validation	Operational and independent multi-date validation

3 Data usage information

3.1 Naming convention

The filename convention of the global LC maps delivered by the C3S LC project is the following:

Filename = <id>-v<version>.nc

```
where <id> = <project>-<level>-<var>-<code>-<spatres>-<tempres>-<epoch>-<area>
```

The dash "-" is the separator between name components. The filename convention obeys NetCDF CF by using the postfix ".nc". The different name components are defined in Table 3-1.

Table 3-1. Components that make up the name of the LC maps delivered by the CCI-LC project

Field	Signification	Value
project	Project acronym	C3S-LC (constant)
level	Processing level	L4 (constant)
var	Unit of the LC product	LCCS (constant)
code	Product code identifier for C3S-LC products	Map (constant)
spatres	Spatial resolution	300m (constant)
tempres	Temporal resolution	P1Y (constant)
epoch	Year of the product	[2020]
version	Incremental that follows the successive revisions	Version of product revision, preferably major.minor,
	of the CCI-LC Processing lines	optionally with processing centre [a-zA-Z0-9]

An example filename of the global LC map for year 2020 would be:

C3S-LC-L4-LCCS-Map-300m-P1Y-2020-v2.1.nc.

3.2 Processing level

Level 4 (i.e. "variables that are not directly measured by the instruments, but are derived from these measurements" [CEOS, 2008].

3.3 Units

Each pixel value corresponds to the label of a categorical land cover class defined using UN-LCCS classifiers (see Table 1-2 in Section 1.1 and in the Annex).

3.4 Spatial Extent

All terrestrial zones of the Earth between the parallels 90°N and 90°S.

3.5 Spatial Resolution

The LC product has a regular latitude-longitude grid with a grid spacing of 0.00278° , which corresponds to ~ 300 m at the equator and ~ 200 m in the mid-latitudes.

3.6 Temporal Resolution

The LC maps are generated on an annual basis.

3.7 Product Layer

The land cover maps are delivered along with four quality flags, which document the reliability of the classification and change detection (Table 3-2).

Bandname in product	Data Type	Description
lccs_class	byte	LC classification in LCCS (22 global classes + NoData coded as
		0). This flag is constant.
processed_flag	byte	Indicates if the pixel has been processed (1) or not (0) to
		generate the baseline LC map.
		0 - pixel not processed
		1 - pixel processed
		This flag is constant.
current_pixel_state	byte	Indicates the pixel status of the baseline LC map, as defined
		by the pre-processing:
		1 - Pixel flagged as "clear land"
		2 - Pixel flagged as "clear water"
		3 - Pixel flagged as "clear snow and ice"
		4 - Pixel flagged as "cloud"
		5 - Pixel flagged as "cloud shadow"
		6 - Pixel flagged as "filled".
		This flag is constant.
observation_count	byte	Indicates the number of valid observations available to
		derive the baseline classification. This flag is constant.
change_count	byte	Provides the number of LC changes observed during the
		period 1992-2022 per pixel. This flag is updated with each
		new LC map.

Table 3-2:	Quality flags	of the	LC maps.
------------	---------------	--------	----------

3.7.1 Projection

The Coordinate Reference System (CRS) used for the global LC products is a geographic coordinate system (GCS) based on the World Geodetic System 84 (WGS84) reference ellipsoid and using a Plate Carrée projection (Figure 3-1).

The projection makes use of an equatorial radius (also called semi-major axis) of 6378.14 km and of a polar radius (also called semi-minor axis) of 6356.76 km. The inverse flattening parameter is 298.26 m.

```
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.257223563]],
PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433],
AUTHORITY["EPSG",4326]]
```

Figure 3-1: Description of the coordinate reference system defining the global LC products.

3.7.2 File format and size

The LC maps are delivered in NetCDF-4 format. The NetCDF files specification follows the CF1.6 conventions [NetCDF, 2010].

The size of one global land cover map product is around 2.5 GB. These estimations take an internal LZW compression into account.

3.7.3 Metadata

The metadata for the LC maps are provided as global attributes in the NetCDF file. It follows the CCI guidelines [Bennett, 2012].

3.8 Qualitative assessment

The following figures present the consistency between the 2016 to 2022 annual LC maps, which are the most recent of the LC map series, and selected LC maps of the 1992 - 2015 series.

Finalization of the construction and filling of the Zungeru hydroelectric dam in Nigeria in 2021.

Year 2022

Figure 3-2: Filling of the Zungeru dam in Nigeria, illustrated by the C3S global annual land cover maps for years 2016, 2020, 2021 and 2022. Coordinates: 9.900879,6.295517 (EPSG:4326). Refer to Table 1-2 for the complete colour scheme.

Example of the expansion of cropland at the expense of the Amazon rainforest between 2016 and 2022.

Figure 3-3: Forest conversion to croplands in the Amazon rainforest, Brazil, illustrated by the C3S global annual land cover maps for years 2016, 2020, 2021 and 2022. Coordinates : -6.9627,-63.1018 (EPSG:4326).

Refer to Table 1-2 for the complete colour scheme.

The drying up of the Aral Sea is in agreement with recently published research [Pekel et al., 2016].

Figure 3-4: Dynamics of the Aral Sea illustrated by the CCI global annual land cover maps for years 1992, 1999, 2003, 2010, 2016,2020, 2021 and 2022. Coordinates: 45.0062,59.5920 (EPSG:4326). The LC maps 1992-2015 were generated in the framework of the ESA CCI LC project while annual classifications for 2016 – 2022 were operationally generated under C3S. Refer to Table 1-2 for the complete colour scheme.

3.9 Validation

A critical step in the acceptance of the LC maps by the user communities is providing confidence in their quality, through validation against independent data such as ground-based reference measurements, or alternate estimates from other projects and sensors.

The main objective of the validation is to allow a potential user to determine the "map's fitness for use" for his / her application. There are several definitions of validation available from various agencies, and it was agreed that the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (CEOS-WGCV) definition would be adopted within the CCI program:

"The process of assessing, by independent means, the quality of the data products derived from the system outputs".

The validation process independence has been ensured (i) using validation datasets that were not used during the production of the LC maps and (ii) being carried out by external parties, i.e. by staff not involved in the production of the LC maps.

The accuracy figures are derived from the confusion matrix, which compares the 2021 and 2022 LC maps with validation samples labelled "certain" by experts and interpreted as "homogenous" at 90%, updated for the same years. Considering the off-diagonal cells that are thematically compatible from an LC typology perspective, the overall accuracy is 70.48% for the LC map 2021 and 70.30% for the LC map 2022. Details about the validation methodology and results are available in the Product Quality Assurance Document [RD - 2] and the Product Quality Assessment Report [RD - 3], respectively.

3.10 Limitations

• Classification accuracy related to the number of observations in the MERIS archive

As already mentioned, users have to know that the quality of the map varies according to the region of interest. Looking at the number of valid observations available over a region (information that is provided in the quality flag 3) can give a first indication about the input data quality and the expected classification reliability. Areas affected by a lower MERIS FR coverage are the western part of the Amazon basin, Chile and the southern part of Argentina, the western part of the Congo basin as well as the Gulf of Guinea, the eastern part of Russia, the eastern coast of China and Indonesia.

• Not all possible changes between the 22 LC classes are captured in the dataset

Given the methodology to detect the change (section 1.2), it is of paramount importance to highlight that the LC dataset does not capture all the possible changes between the 22 LCCS land cover classes.

The 22 LCCS land cover classes are indeed grouped into the 6 IPCC land categories, with the consideration of the subcategories shrubland, sparse vegetation, bare area, and water (forming the "Other" IPCC main land category), as explained in Table 1-4.

Consequently, any change occurring between LCCS classes being part of the same IPCC land category is not captured by the LC dataset. More precisely, the LC dataset does not provide information on:

- the conversions between rainfed (class values 10, 11 and 12) and irrigated agriculture (class value 20). As a result, the agriculture intensification through irrigation will not be detected as a change;
- the conversion between forest classes (e.g. conversion of broadleaved to mixed forests, flooded forest dewatering, or salinization of a forest flooded with freshwater);
- the conversion between sparse vegetation (class value 150) and lichens and mosses (class value 140);
- the conversion between a "pure"⁵ class and a mosaic class (e.g. forest degradation characterized by the evolution of a pure forest (class values 50 to 90) to a mosaic of natural vegetation (class values 100 and 110); cropland intensification characterized by the conversion of a mosaic of cropland and natural vegetation (class values 30 and 40) to a rainfed or irrigated cropland (class values 10 to 20); forest regeneration characterized a mosaic of natural vegetation (class values 100 and 110) to a pure forest (class values 50 to 90).
- the conversion between "level 2" or "regional" classes (see section 1.1), whatever the IPCC land category. This corresponds to any dynamics specific to herbaceous vs woody cropland (class values 11 and 12), to the density of the forests (depicted in level 2 of the forest classes 61, 62, 71, 72, 81, and 82), to the phenology of the shrubland (class values 121 and 122), to the type of the sparse vegetation (class values 151, 152, 153) or the type of bare area (class values 201 and 202).

• Abrupt changes better captured than gradual ones

To allow the detection of a change from a class X to a class Y, the developed method needs to observe the new class Y for at least 2 consecutive years. This was explained in detail in section 1.2, Figure 1-4. Consequently, abrupt changes are better captured than gradual ones.

Abrupt changes are characterized by sudden LC transitions from one IPCC class to another that most often last more than 2 years (e.g. a forest loss to an agriculture class in Figure 1-2).

Conversely, gradual changes that can be understood as slow transitions between two IPCC classes by going through intermediate mosaic classes are not so well detected. An example of gradual change would be transitions from shrubland (class value 120) to bare area (class value 200) by going through successive land cover states such as mosaics and grasslands classes lasting for a maximum of 2 years.

⁵ "pure" is here expressed as opposed to "mosaic" or "mixed" class, which have the values 30, 40, 100 and 110

• Change delineated at 300 m based on hot spots of change detected at 1 km

All annual LC maps are delivered at 300 m spatial resolution, but it should be noted that the change detection is performed at 1 km spatial resolution, based on the AVHRR, SPOT-VGT, PROBA-V, and S3-OLCI missions. It means that only land cover changes visible at 1 km are detected. These hot spots of change and their surroundings (up to 5 km) are then further delineated at 300 m starting 2004 onwards thanks to the availability of the 300 m MERIS, PROBA-V, and S3-OLCI time series at this period.

As a result, several cases of change omissions are observed in the annual LC maps. First, changes of low intensity and/or surface smaller than 1 km² are not detected. Second, changes are not delineated at 300 m if it does not occur in the surroundings of a hot spot of change detected at 1 km - in other words, if the change occurs at a distance greater than 5 km away from the 1 km change hot spot. Finally, changes will not be delineated at 300 m if they occur before the year 2004 as no MERIS and PROBA-V time series exist at 300 m before 2003.

• Changes along the coastlines and of permanent snow and ice class are not included in the LC products

Changes along the coastlines are not captured with a change detection algorithm based on 1 km observations. Yet, an exception is made for changes related to the Saudi Arabian artificial islands. In addition, the permanent snow and ice (class value 220) remains constant over time and relies solely on the Randolph Glaciers Inventory [Pfeffer et al., 2014].

• Change during the AVHRR 1992 - 1999 period

The performance of the change detection is highly dependent on the input data quality and availability. The general lower quality of AVHRR surface reflectance values and georeferencing implies a less reliable change detection. In addition, the lack of AVHRR data in the year 1994 reduces the change detection reliability for this year.

4 Data access information

4.1 Access to the users through the CDS

The data can be accessed through the CDS using this link:

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview.

This general link provides an overview of the product, and from it, it is possible to consult the documentation of the products and download the datasets.

4.2 Data provider

The C3S Land Cover v2.1.1 is a dataset produced by UCLouvain. Brockmann Consult GmbH is responsible for the required pre-processing and the distribution of the dataset.

The point of contact is:

- Email: <u>copernicus-support@ecmwf.int</u>
- Website: http://climate.copernicus.eu/contact-us

4.3 Data visualization and analysis

The CDS Toolbox is an online C3S service that allows working with the data directly through the CDS: <u>https://cds.climate.copernicus.eu/cdsapp#!/toolbox</u>. This website includes a workspace to create, edit and run applications, an Application Programming Interface reference library with explanations of the Toolbox Tool, documentation materials including tutorials and how-to guides, and an application gallery with already existing examples of applications.

In addition, numerous programming languages exist that can be used for reading and analysing netCDF files. These include both compiled languages such as Java, Fortran and C, and languages that allow interactive analysis and plotting of data. Some examples of the latter are:

- Python (<u>https://www.python.org/</u>) with add on modules such as:
 - o netCDF4: <u>https://unidata.github.io/netcdf4-python/</u>
 - NumPy: <u>https://numpy.org/</u>
 - matplotlib <u>https://matplotlib.org/</u>
 - Iris: <u>https://scitools-iris.readthedocs.io/en/stable/</u>
 - Cartopy: <u>https://scitools.org.uk/cartopy/docs/latest/</u>
- IDL https://www.l3harrisgeospatial.com/Software-Technology/IDL
- MATLAB <u>https://www.mathworks.com/products/matlab.html</u>
- Grid Analysis and Display System (GrADS) <u>http://cola.gmu.edu/grads/</u>
- NCAR Command Language (NCL) <u>https://www.ncl.ucar.edu/</u>

5 References

- Arino, Olivier, Patrice Bicheron, Frederic Achard, John Latham, Ron Witt, and Jean Louis Weber.
 2008. "GlobCover: The Most Detailed Portrait of Earth." European Space Agency Bulletin
 2008 (136): 24–31.
- Bartholomé, E, and A S Belward. 2005. "GLC2000: A New Approach to Global Land Cover Mapping from Earth Observation Data." International Journal of Remote Sensing 26 (9): 1959–77. https://doi.org/10.1080/01431160412331291297.
- Bennett, V. (2012). Guidelines for Data Producers Climate Change Initiative Phase I, CCI-PRGM-EOPS-TN-11-0003. Issue 2.1. Date 20.03.2012.
- Bicheron, P., P. Defourny, C. Brockmann, L. Schouten, C. Vancutsem, M. Huc, S. Bontemps, et al. (2008). "GLOBCOVER: Products Description and Validation Report," no. 2.0. <u>http://due.esrin.esa.int/page_globcover.php</u>. Accessed on 19/02/2024.
- Bontemps, S., M. Herold, L. Kooistra, A. Van Groenestijn, A. Hartley, O. Arino, I. Moreau, and P. Defourny. (2012). "Revisiting Land Cover Observation to Address the Needs of the Climate Modeling Community." Biogeosciences 9 (6): 2145–57. <u>https://doi.org/10.5194/bg-9-2145-2012</u>. Accessed on 19/02/2024.
- Defourny, P, C Vancutsem, C Bicheron, C Brockmann, F Nino, L Schouten, and M Leroy. 2007. "GlobCover: A 300M Global Land Cover Product for 2005 Using ENVISAT MERIS Time Series." Proc. ISPRS Comm. VII Mid-Term Symp., no. May 2006: 8–11.
- Defourny, P., Lamarche, C., Bontemps, S., De Maet, T., Van Bogaert, E., Moreau, I., Brockmann, C., Boettcher, M., Kirches, G., Wevers, J., Santoro, M., Ramoino, F., & Arino, O. (2017). Land Cover Climate Change Initiative - Product User Guide v2. Issue 2.0. Available at: <u>http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2 2.0.pdf</u> Accessed 19/02/2024.
- Di Gregorio, A. and Louisa J M Jansen (2005). Land Cover Classification. System Classification concepts and user manual. V2.0. (R. Food & Agriculture Organization of the United Nations, Ed.) https://www.fao.org/3/y7220e/y7220e00.htm. Accessed on 19/02/2024.
- Committee on Earth Observation Satellites (CEOS). (2008). "Working Group on Information Systems and Services Interoperability Handbook," no. 1.
- Esch, Thomas, Wieke Heldens, Andreas Hirner, Manfred Keil, Mattia Marconcini, Achim Roth, Julian Zeidler, Stefan Dech, and Emanuele Strano. (2017). "Breaking New Ground in Mapping Human Settlements from Space – The Global Urban Footprint." ISPRS Journal of Photogrammetry and Remote Sensing 134: 30–42.
- ESA, 2017. ESA Land Cover CCI Algorithm Theoretical Basis Document (ATBD) v1.2 CCI-LC-ATBDv2– D2.2 – V1.2 – 2017-01-13. Available online at https://climate.esa.int/en/projects/land-cover/key-documents/, accessed on 30/04/2021.
- ESA, 2011. ESA Land Cover CCI User Requirements Document (URD) v2.2 LAND_COVER_CCI_URD_2.2 – V2.2 – 22-02-2011. Available online at https://climate.esa.int/media/documents/Land_Cover_CCI_URD_2.2.pdf, accessed on 30/04/2021.
- ESA, 2014. ESA Land Cover CCI Product Specification Document (PSD) v1.11 LAND_COVER_CCI_PSD_1.11 – V1.11 – 03-07-2014. Available online at http://www.esalandcover-cci.org/?q=documents#, accessed on 30/04/2021.

- ESA, 2015. ESA Land Cover CCI User Requirements Document (URD) Phase II v1.2. Available online at https://climate.esa.int/en/projects/land-cover/key-documents/, accessed on 30/04/2021.
- GCOS (2016). The Global Observing System for Climate: Implementation Needs. GCOS-200, (2016). https://library.wmo.int/doc_num.php?explnum_id=3417 accessed on 19/02/2024.
- Google, (2016). Timelapse. <u>http://world.time.com/timelapse2/</u> accessed on 19/02/2024.
- Gregorio, Antonio Di, and Louisa J M Jansen. (2005). Land Cover Classification System. Classification Concepts and User Manual. Edited by Rome Food & Agriculture Organization of the United Nations. Fao. Italy. <u>https://doi.org/10.1017/CBO9781107415324.004</u>.
- NetCDF (2010). NetCDF Climate and Forecast (CF) Metadata Conventions. Issue 1.5. Date 25.10.2010.
- Pesaresi, Martino, Daniele Ehrlich, Aneta J Florczyk, Sergio Freire, Andreea Julea, Thomas Kemper, Pierre Soille, and Vasileios Syrris. (2016). "Operating Procedure for the Production of the Global Human Settlement Layer from Landsat Data of the Epochs 1975, 1990, 2000, and 2014." <u>https://doi.org/10.2788/253582</u>. Accessed on 19/02/2024.
- Pfeffer, W Tad, Anthony A Arendt, Andrew Bliss, Tobias Bolch, J Graham Cogley, Alex S Gardner, Jon Ove Hagen, et al. (2014). "The Randolph Glacier Inventory: A Globally Complete Inventory of Glaciers." *Journal of Glaciology* 60 (221): 537–52.

https://doi.org/10.3189/2014JoG13J176. Accessed on 19/02/2024.

UNEP-WCMC, (2002). Global Mangrove Atlas. <u>Ocean Data Viewer (unep-wcmc.org)</u>. Last page update: 01/12/2022.

6 Annex

6.1 ANNEX A – C3S and CCI Land Cover legend Hierarchical global and regional legends

La	bel	Value			202
Global	Regional	Global	Regional	Color	RGB
No Data		0			0, 0, 0
Cropland, rainfed		10			255, 255, 100
	Cropland, rainfed, herbaceous cover		11		255, 255, 100
	Cropland, rainfed, tree, or shrub cover		12		255, 255, 0
Cropland, irrigated or post-flooding		20			170, 240, 240
Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)		30			220, 240, 100
Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)		40			200, 200, 100
Tree cover, broadleaved, evergreen, closed to open (>15%)		50			0, 100, 0
Tree cover,		60			0, 160, 0
broadleaved, deciduous, closed to open (>15%)	Tree cover, broadleaved, deciduous, closed (>40%)		61		0, 160, 0
	Tree cover, broadleaved, deciduous, open (15- 40%)		62		170, 200, 0
Tree cover,		70			0, 60, 0
needleleaved, evergreen, closed to open (>15%)	Tree cover, needleleaved, evergreen, closed (>40%)		71		0, 60, 0
	Tree cover, needleleaved, evergreen, open (15-40%)		72		0, 80, 0
Tree cover,		80			40, 80, 0
needleleaved, deciduous, closed to open (>15%)	Tree cover, needleleaved, deciduous, closed (>40%)		81		40, 80, 0

Label		Value		Color	DCD
Global	Regional	Global	Regional	Color	KGD
	Tree cover, needleleaved, deciduous, open (15-40%)		82		40, 100, 0
Tree cover, mixed leaf type (broadleaved and needleleaved)		90			120, 130, 0
Mosaic tree and shrub (>50%) / herbaceous cover (<50%)		100			140, 160, 0
Mosaic herbaceous cover (>50%) / tree and shrub (<50%)		110			190, 150, 0
Shrubland		120			150, 100, 0
	Evergreen shrubland		121		150, 100, 0
	Deciduous shrubland		122		150, 100, 0
Grassland		130			255, 180, 50
Lichens and mosses		140			255, 220, 210
Sparse vegetation (tree,		150			255, 235, 175
shrub, herbaceous	Sparse tree (<15%)		151		255, 200, 100
cover) (<15%)	Sparse shrub (<15%)		152		255, 210, 120
	Sparse herbaceous cover (<15%)		153		255, 235, 175
Tree cover, flooded, fresh, or brackish water		160			0, 120, 90
Tree cover, flooded, saline water		170			0, 150, 120
Shrub or herbaceous cover, flooded, fresh/saline/brackish water		180			0, 220, 130
Urban areas		190			195, 20, 0
Bare areas		200			255, 245, 215
	Consolidated bare areas	201			220, 220, 220
	Unconsolidated bare areas	202			255, 245, 215
Water bodies		210			0, 70, 200
Permanent snow and ice		220			255, 255, 255

LCCS coding of the C3S and CCI-LC legend

Value	LCCS Entry	LCCS Label	LCCCode	LCCLevel
10		Rainfed shrub crops // Rainfed tree crops // Rainfed herbaceous crops	11494 // 11490 // 11498	A2XXXXXXD1 // A1XXXXXXD1 // A3XXXXXXD1
11		Rainfed herbaceous crops	11498	A3XXXXXD1
12	A11	Rainfed shrub crops // Rainfed tree crops	11490 // 11494	A1XXXXXD1 // A2XXXXXD1
20	Cultivated Terrestrial Areas and Managed	Irrigated tree crops // Irrigated shrub crops // Irrigated herbaceous crops // Post- flooding cultivation of herbaceous crops	11491 // 11495 // 11500 // 11499	A1XXXXXD3 // A2XXXXXD3 // A3XXXXXXD3 // A3XXXXXD2
30	Lands	Cultivated and managed terrestrial areas / Natural and semi-natural primarily terrestrial vegetation	0003 / 0004	A11 / A12
40		Natural and semi-natural primarily terrestrial vegetation / Cultivated and managed terrestrial areas	0004 / 0003	A12 / A11
50		Broadleaved evergreen closed to open trees // Broadleaved semi-deciduous closed to open trees	21496 // 21497- 15048	A3A20B2XXD1E1 // A3A20B2XXD1E2-E4
60		Broadleaved deciduous closed to open trees	21497	A3A20B2XXD1E2
61		Broadleaved deciduous closed (100- 40%) trees	21497- 121340	A3A20B2XXD1E2-A21
62		Broadleaved deciduous open (40-(20- 10)%) trees	20132- 3012	A3A11B2XXD1E2-A13
70	A12	Needleleaved evergreen closed to open trees	21499	A3A20B2XXD2E1
71	Semi-natural Terrestrial	Needleleaved evergreen closed (100- 40%) trees	21499- 121340	A3A20B2XXD2E1-A21
72	Vegetation –	Needleleaved evergreen open (40-(20- 10)%) trees	20134- 3012	A3A11B2XXD2E1-A13
80	Woody / Trees	Needleleaved deciduous closed to open trees	21500	A3A20B2XXD2E2
81		Needleleaved deciduous closed (100- 40%) trees	21500- 121340	A3A20B2XXD2E2-A21
82		Needleleaved deciduous open (40-(20- 10)%) trees	20135- 3012	A3A11B2XXD2E2-A13
90		Broadleaved closed to open trees / Needleleaved closed to open trees	21495 / 21498	A3A20B2XXD1 / A3A20B2XXD2

Value	LCCS Entry	LCCS Label	LCCCode	LCCLevel
100	A12 Natural and	Closed to open trees / Closed to open shrubland (thicket) // Herbaceous closed to open vegetation	21445 // 21449 / 21453	A3A20 // A4A20 / A2A20
110	Terrestrial Vegetation	Tural'ialHerbaceous closed to open vegetationion// Closed to open trees / Closed toopen shrubland (thicket)2		A2A20 / A3A20 // A4A20
120	A12	Broadleaved closed to open shrubland (thicket)	21449	A4A20
121	Natural and Semi- natural	Broadleaved Evergreen Closed to Open Thicket // Needleleaved Evergreen Closed to Open Thicket	21517 // 21520	A4A20B3XXD1E1 // A4A20B3XXD2E1
122	Vegetation – Shrubs	Broadleaved Deciduous Closed to Open Thicket // Needleleaved Deciduous Closed to Open Thicket	21518 // 21521	A4A20B3XXD1E2 // A4A20B3XXD2E2
130	A12 Natural and Semi-	Herbaceous closed to very open vegetation	21453	A2A20
140	Terrestrial Vegetation – Herbaceous	Closed to open lichens/mosses	21465	A7A20
150	A12 Natural and	Sparse trees // Herbaceous sparse vegetation // Sparse shrubs	20052 // 20055 // 20058	A3A14 // A4A14 // A2A14
151	Semi-natural	Sparse Trees	20052	A3A14
152	Vegetation	Sparse Shrubs	20055	A4A14
153		Herbaceous Sparse Vegetation	20058	A2A14
160	A24	Closed to open (100-40%) broadleaved trees on temporarily flooded land, water quality: freshwater // Closed to open (100-40%) broadleaved trees on permanently flooded land, water quality: freshwater	41638-R1 // 41724- R1	A3A20B2C1D1-R1 // A3A20B2C2D1-R1
Natural and Semi-natural Aquatic Vegetation 170		Closed to open (100-40%) broadleaved trees on permanently flooded land (with daily variations), water quality: saline water // Closed to open (100- 40%) broadleaved trees on permanently flooded land (with daily variations), water quality: brackish water // Closed to open (100-40%) semi-deciduous shrubland on	41638- 4891-R2 // 41638- 4891-R3	A3A20B2C1D1-C5-R2 // A3A20B2C1D1-C5-R3

Value	LCCS Entry	LCCS Label	LCCCode	LCCLevel
		permanently flooded land (with daily variations), water quality: saline water // Closed to open (100-40%) semi- deciduous shrubland on permanently flooded land (with daily variations), water quality: brackish water		
180		Closed to open shrubs on permanently flooded land // Closed to open herbaceous vegetation on permanently flooded land // Closed to open shrubs on temporarily flooded land // Closed to open herbaceous vegetation on temporarily flooded land // Closed to open shrubs on waterlogged soil // Closed to open herbaceous vegetation on waterlogged soil Water quality: fresh, brackish or saline water	41897 // 41983 // 42069 // 42347 // 42348 // 42349	A4A20B3C1 // A4A20B3C2 // A4A20B3C3 // A2A20B4C1 // A2A20B4C2 // A2A20B4C3
190	B15 Artificial Surfaces	Artificial surfaces and associated areas	0010	B15
200	B16	Bare areas	0011	B16
201	Bare	Consolidated Material(s)	6001	A1
202	Areas	Unconsolidated Material(s)	6004	A2
210		Natural water bodies // Artificial water bodies	7002 // 8002	A1B1 // A1B1
220	B28 Inland Waterbodies, snow and ice	Artificial perennial snow // Artificial perennial ice // Perennial snow // Perennial ice	7005 // 7008 // 8006 // 8009	A2B1 // A3B1 // A2B1 // A3B1

6.2 ANNEX B – Land Cover product metadata

The global land cover product description is based on the structure of the NetCDF files. The global attributes of the land cover maps are described in Table 6-1 and the variables and variables' attributes of the global LC maps NetCDF file are presented in Table 6-2.

Table 6-1: Global attributes of the global LC maps delivered by the C3S and CCI LC projects, according to thestructure of the NetCDF files

Attribute Name	Format	Value	Description	
title		C3S-LC-L4-LCCS-Map-300m-P1Y-2020- v2.1cds.nc	Product identifier (see "naming convention" above)	
summary		This dataset contains a global land cover map obtained from surface reflectance composites, placed onto a regular grid.		
project		Climate Change Initiative - European Space Agency		
references		http://www.esa-landcover-cci.org/	References that describe the data or methods used to produce it.	
institution		UCL	Where the map data has been produced	
contact		Pierre.Defourny@uclouvain.be		
source		S3-OLCI	Source of the original data	
history		Ic-mosaic-1.1 Ic-compositing-1.0 Ic-stratification-1.0 Ic-classification-1.0 Ic-labeling-1.0	List of applications that have modified the surface reflectance composites, with time stamp, processor, and parameters	
comment			Miscellaneous information about the data or method used to produce it	
Conventions		CF-1.6	Name of the conventions followed	
type		LCMap-300m	Product type	
date_created	yyyy-MM- dd'T'HH:mm:ss'Z'	e.g " 20130424T124732Z"	Creation time of product	
creator_name		UCL-Geomatics		
creator_url		http://www.uclouvain.be/elie.html		
creator_email		Pierre.Defourny@uclouvain.be		
epoch	YYYY	[YYYY] where the two "YYYY" are the year of the product	Year of the product,	
geospatial_lat_min	-90.0 90.0		South border of the bounding box	
geospatial_lat_max	-90.0 90.0		North border of the bounding box	

Attribute Name	Format	Value	Description
geospatial_lon_min	-180.0 180.0		West border of the
			bounding box
geospatial_lon_max	-180.0 180.0		East border of the
			bounding box
geospatial_lat_units		degrees_north	
geospatial_lat_		e.g " 0.002778 "	
resolution			
geospatial_lon_units		degrees_east	

Table 6-2: Variables and variables' attributes of the global LC maps delivered by the C3S and CCI LC projects,according to the structure of the NetCDF files

Variable	Attribute	Format	Value	Descriptio n
crs		int		Coordinate
				reference
				system
				attribute
				container
	grid_mapping_name		Plate Carrée	
	semi_major_axis		6378137.0	
	inverse_flattening		298.257223563	
	false_easting		0.0	
	false_northing		0.0	
	longitude_of_central_meridian		0.0	
	scale_factor_at_central_meridia		1.0	
	n			
time		double(time)		Start time of the multi- year period
	standard_name		time	
	long_name		multi-year period	
	units		year	
lon		double (lon)	-180.0 180.0	Longitude coordinate of image column
	standard_name		longitude	
	long_name		WGS84 longitude coordinate	
	units		degrees east	
	valid min		-180.0	
	valid max		180.0	
lat		double (lat)	-90.0 90.0	Latitude coordinate of
	standard name		latitude	IIIage IOw
			WGS84 Intitude	
			coordinate	
			coordinate	

Variable	Attribute	Format	Value	Descriptio n
	units		degrees north	
	valid_min		-90.0	
	valid_max		90.0	
lcss_class		byte (lat,lon)		LC classification in LCCS
	standard_name		land cover	
	long_name		LC class defined in LCCS	
	vocabulary		UN-LCCS 2005	
	valid_min		1	
	valid_max		240	
	_FillValue		Ob	
processed_flag		byte (lat,lon)		LC map quality flag 1: pixel processed or not
	standard_name		land_cover status_flag	
	long_name		LC map processed area flag	
	valid_min		0	
	valid max		1	
	FillValue		-1b	
current_pixel_statu s		byte (lat,lon)		LC map quality flag 2: pixel status
	standard_name		land_cover status_flag	
	long_name		LC map area type mask	
	valid_min		0	
	valid_max		6	
	_FillValue		-1b	
observation_count		short(lat,long)		LC map quality flag 3: number of valid observations
	standard_name		land_cover number_of_observation s	
	long_name		number of valid observations	
	valid_min		0	
	valid_max		32767	
	_FillValue		-1s	
	_FillValue		-1b	
	scale_factor		0.01f	
change_count		byte(lat,long)		LC map quality flag 4: change

Variable	Attribute	Format	Value	Descriptio n
				confidence level
	standard_name		change confidence_level	
	long_name		Change confidence level based on change detection module	
	valid_min		0	
	valid_max		100	
	_FillValue		-1b	

Copernicus Climate Change Service

ECMWF - Robert-Schuman-Platz 3, 53175 Bonn, Germany

Contact: https://support.ecmwf.int/

climate.copernicus.eu copernicus.eu

ecmwf.int